MiR-448 promotes glycolytic metabolism of gastric cancer by downregulating KDM2B
نویسندگان
چکیده
MicroRNAs are critical in various human cancers, including gastric cancer (GC). However, the mechanism underlying the GC development remains elusive. In this study, we demonstrate that miR-448 is increased in GC samples and cell lines. Overexpression of miR-448 facilitated the proliferation of GC cells by stimulating glycolysis. Mechanistically, we identified KDM2B, a reader for methylated CpGs, as the target of miR-448 that represses glycolysis and promotes oxidative phosphorylation. Overexpression of miR-448 reduced both the mRNA and protein levels of KDM2B, whereas KDM2B re-expression abrogated the miR-448-mediated glycolytic activities. Furthermore, we discovered Myc as a key target of KDM2B that controls metabolic switch in GC. Importantly, a cohort of 81 GC tissues revealed that miR-448 level closely associated with a battery of glycolytic genes, in which KDM2B showed the strongest anti-correlation coefficient. In addition, enhanced miR-448 level was significantly associated with poor clinical outcomes of GC patients. Hence, we identified a previously unappreciated mechanism by which miR-448 orchestrate epigenetic, transcriptional and metabolic networks to promote GC progression, suggesting the possibility of therapeutic intervention against cancer metabolic pathways.
منابع مشابه
miR-135a promotes gastric cancer progression and resistance to oxaliplatin
Resistance to oxaliplatin (OXA)-based chemotherapy regimens continues to be a major cause of gastric cancer (GC) recurrence and metastasis. We analyzed GC samples and matched non-tumorous control stomach tissues from 280 patients and found that miR-135a was overexpressed in GC samples relative to control tissues. Tumors with high miR-135a expression were more likely to have aggressive character...
متن کاملDownregulated miRNA-1269a variant (rs73239138) decreases the susceptibility to gastric cancer via targeting ZNF70
Although emerging evidence has indicated that single nucleotide polymorphisms (SNPs) in microRNAs (miRNAs) are associated with susceptibility to gastric cancer, a limited number of studies have revealed the underlying molecular mechanisms. In the present study, the results suggested that miR-1269a rs73239138 has a role in decreasing the risk of gastric cancer. The level of miR-1269a variant exp...
متن کاملMicroRNA-940 promotes tumor cell invasion and metastasis by downregulating ZNF24 in gastric cancer
Growing evidence indicates that microRNA (miRNA) plays a vital role in progression and metastasis of gastric cancer (GC). However, the underlying mechanism of miRNA-mediated metastasis has not been fully understood. Recently, miRNA-940 (miR-940) was found to be overexpressed in GC, which correlated with malignant progression and poor survival. Mechanistically, we found that miR-940 promoted GC ...
متن کاملPABPC1 exerts carcinogenesis in gastric carcinoma by targeting miR-34c.
As one of the common malignant tumors that threaten human health severely, gastric carcinoma is the second highest cause of cancer death and the fourth most common cancer globally. However, the mechanism underlying gastric cancer is still not fully understood. PABPC1 plays an important role in translation, control the rate of mRNA deadenylation and participates in mRNA decay, which is involved ...
متن کاملMiR-196a is upregulated in gastric cancer and promotes cell proliferation by downregulating p27(kip1).
Aberrant expression of miR-196a has been frequently reported in cancer studies. However, the expression and mechanism of its function in gastric cancer remains unclear. Quantitative real-time PCR was carried out to detect the relative expression of miR-196a in gastric cancer cell lines and tissues. SGC7901 cells were treated with miR-196a inhibitors, mimics, or pCDNA/miR-196a to investigate the...
متن کامل